Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Pediatr ; 11: 1143051, 2023.
Article in English | MEDLINE | ID: covidwho-2320355

ABSTRACT

The 2022 worldwide epidemic of acute hepatitis and liver failure in young children has led to a focus on unusual causes for childhood acute hepatitis. In the UK epidemic, human herpes virus subtype 6B (HHV-6B) was detected along with adenovirus subtype-41F in severely affected children, especially in those requiring liver transplantation (LT). The lifting of COVID lock-down measures has coincided with the rise in these common childhood infections with a higher than expected rate of systemic complications. The sudden exposure of young children to common childhood infections from which they were protected during the pandemic may have induced an abnormal immune mediated response potentiated by multiple pathogen exposure. Primary HHV-6 infection is one such common childhood infection. Classically known as Roseola infantum due to the appearance of a widespread erythematous rash on fever subsidence (exanthema subitem), it has a peak incidence of 6-12 months of age and almost all children will have been infected by age 2. It is the virus most frequently associated with febrile convulsions but the more serious complications of hepatitis and liver failure are rare. We report on the historic cases of three female infants who had suspected primary HHV-6B infection, acute hepatitis and rapid progression to acute liver failure (ALF) requiring LT. Appearances of their native liver were identical to those described in children in the recent hepatitis epidemic. Deteriorating clinical trajectories of recurrent graft hepatitis and rejection-like episodes followed and all three succumbed to graft failure with HHV-6B detected posthumously in their liver allografts. Our case series and the serious complications observed with the recent rise in common childhood infections is a reminder that these routinely encountered pathogens can be deadly especially in the young immunologically untrained. We advocate for HHV-6 to be screened for routinely in children with acute hepatitis and the use of effective HHV-6 anti-viral prophylaxis to prevent recurrence post-transplant.

2.
Pediatr Neurosurg ; 58(2): 89-96, 2023.
Article in English | MEDLINE | ID: covidwho-2254240

ABSTRACT

INTRODUCTION: Human herpes virus-6 (HHV-6) is a ubiquitous virus but can lead to deleterious clinical manifestations due to its predilection for the pediatric central nervous system. Despite significant literature describing its common clinical course, it is rarely considered as a causative agent in CSF pleocytosis in the setting of craniotomy and external ventricular drainage device. Identification of a primary HHV-6 infection allowed for timely treatment with an antiviral agent along with earlier discontinuation of antibiotic regimen and expedited placement of a ventriculoperitoneal shunt. CASE PRESENTATION: A two-year-old girl presented with 3 months of progressive gait disturbance and intranuclear ophthalmoplegia. Following craniotomy for removal of 4th ventricular pilocytic astrocytoma and decompression of hydrocephalus, she suffered a prolonged clinical course due to persistent fevers and worsening CSF leukocytosis despite multiple antibiotic regimens. The patient was admitted to the hospital during the COVID-19 pandemic and isolated with her parents in the intensive care unit with strict infection control measures. FilmArray Meningitis/Encephalitis (FAME) panel ultimately detected HHV-6. Clinical confirmation of HHV-6-induced meningitis was proposed given improvement in CSF leukocytosis and fever reduction following the initiation of antiviral medications. Pathologic analysis of brain tumor tissue failed to show HHV-6 genome positivity, suggesting a primary peripheral etiology of infection. CONCLUSION: Here, we present the first known case of HHV-6 infection detected by FAME following intracranial tumor resection. We propose a modified algorithm for persistent fever of unknown origin which may decrease symptomatic sequelae, minimize additional procedures, and shorten length of ICU stay.


Subject(s)
Astrocytoma , Brain Neoplasms , COVID-19 , Herpesvirus 6, Human , Female , Humans , Child , Child, Preschool , Herpesvirus 6, Human/genetics , Leukocytosis , Pandemics , Astrocytoma/surgery , Brain Neoplasms/surgery , Disease Progression , Fever/etiology
3.
JAAD Int ; 7: 164-168, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1804500

ABSTRACT

A spectrum of cutaneous reactions to SARs-CoV-2 (COVID-19) vaccines have been reported in the literature. We present a case of a pityriasis rosea-like rash occurring after Pfizer COVID-19 vaccination and review cases of pityriasis rosea (PR)/PR-like eruption (PR-LE) after mRNA COVID-19 vaccine published in the medical literature. Of the 30 cases found, none experienced severe adverse effects and the rash resolved in an average of 5.6 weeks. It is important for physicians to be aware of this self-limited reaction so they can reassure and appropriately counsel patients that it is safe to receive subsequent vaccine doses despite the cutaneous eruption. Additionally, differences in incidence of this reaction after Pfizer and Moderna vaccination may suggest a differing host immune response incited by these vaccines which warrants further investigation.

4.
Vaccine ; 39(40): 5729-5731, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1392617

ABSTRACT

INTRODUCTION: Concerns were raised over an increase in Bell's palsy, herpes simplex and herpes zoster after BNT162b2 vaccination, all are manifestations of herpesviruses reactivation. As herpesviruses commonly reactivate in the oropharynx, we have hypothesized that oropharyngeal shedding of herpesviruses will increase after vaccination. METHODS: Immune-competent Adults, excluding those using topical steroids or manifesting symptomatic herpesvirus infection, were sampled before BNT162b2 vaccination and one week after. Herpesviruses 1-7 shedding was tested with a multiplexed PCR. RESULTS: In 103 paired samples the prevalence of herpesviruses was similar before and after vaccination: HSV1, 3.9% vs. 5.8% (p = 0.75); HSV2, 0% vs. 1% (p = not applicable, NA); VZV, 0% vs. 0% (p = NA); EBV, 14.6% vs. 17.5% (p = 0.63); CMV, 0% vs. 0% (p = NA); HHV6, 4.9% vs. 7.8% (p = 0.55); HHV7, 71.8% vs. 72.8% (p = 1); any herpesvirus, 73.8% vs. 74.8% (p = 1). DISCUSSION: We did not find evidence for increased oropharyngeal reactivation of herpesviruses one week after BNT162b2.


Subject(s)
COVID-19 , Adult , BNT162 Vaccine , COVID-19 Vaccines , Herpesvirus 3, Human , Humans , Oropharynx , RNA, Messenger , SARS-CoV-2 , Vaccination
5.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1389305

ABSTRACT

Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.


Subject(s)
Aging , Brain/physiopathology , Inflammation/physiopathology , Microglia/virology , Virus Diseases/physiopathology , Animals , Brain/immunology , Brain/virology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammation/immunology , Inflammation/virology , Microglia/immunology , Microglia/pathology , SARS-CoV-2/physiology , Virus Diseases/immunology , Virus Diseases/virology
6.
Chem Eng J ; 420: 127575, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-898556

ABSTRACT

Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL